Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Med ; 12(4)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2236985

ABSTRACT

INTRODUCTION: Among its effect on virtually all other organs, COVID-19 affects the cardiovascular system, potentially jeopardizing the cardiovascular health of millions. Previous research has shown no indication of macrovascular dysfunction as reflected by carotid artery reactivity, but has shown sustained microvascular dysfunction, systemic inflammation, and coagulation activation at 3 months after acute COVID-19. The long-term effects of COVID-19 on vascular function remain unknown. MATERIALS AND METHODS: This cohort study involved 167 patients who participated in the COVAS trial. At 3 months and 18 months after acute COVID-19, macrovascular dysfunction was evaluated by measuring the carotid artery diameter in response to cold pressor testing. Additionally, plasma endothelin-1, von Willebrand factor, Interleukin(IL)-1ra, IL-6, IL-18, and coagulation factor complexes were measured using ELISA techniques. RESULTS: The prevalence of macrovascular dysfunction did not differ between 3 months (14.5%) and 18 months (11.7%) after COVID-19 infection (p = 0.585). However, there was a significant decrease in absolute carotid artery diameter change, 3.5% ± 4.7 vs. 2.7% ± 2.5, p-0.001, respectively. Additionally, levels of vWF:Ag were persistently high in 80% of COVID-19 survivors, reflecting endothelial cell damage and possibly attenuated endothelial function. Furthermore, while levels of the inflammatory cytokines interleukin(IL)-1RA and IL-18 were normalized and evidence of contact pathway activation was no longer present, the concentrations of IL-6 and thrombin:antithrombin complexes were further increased at 18 months versus 3 months (2.5 pg/mL ± 2.6 vs. 4.0 pg/mL ± 4.6, p = 0.006 and 4.9 µg/L ± 4.4 vs. 18.2 µg/L ± 11.4, p < 0.001, respectively). DISCUSSION: This study shows that 18 months after COVID-19 infection, the incidence of macrovascular dysfunction as defined by a constrictive response during carotid artery reactivity testing is not increased. Nonetheless, plasma biomarkers indicate sustained endothelial cell activation (vWF), systemic inflammation (IL-6), and extrinsic/common pathway coagulation activation (FVII:AT, TAT) 18 months after COVID-19 infection.

2.
Res Pract Thromb Haemost ; 5(8): e12630, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1588882

ABSTRACT

BACKGROUND: Vaccination is the leading approach in combatting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. ChAdOx1 nCoV-19 vaccination (ChAdOx1) has been linked to a higher frequency of rare thrombosis and thromboembolism. This study aimed to explore markers related to the blood coagulation system activation and inflammation, before and after ChAdOx1 vaccination. PATIENTS AND METHODS: An observational cohort study including 40 health care workers. Whole blood samples were collected before, and either 1 or 2 days after vaccination. Activated coagulation factors in complex with their natural inhibitors were determined by custom ELISAs, including thrombin:antithrombin (T:AT), kallikrein:C1-esterase-inhibitor (PKa:C1Inh), factor(F)IXa:AT, FXa:AT, FXIaAT, FXIa:alpha-1-antitrypsin (α1AT), FXIa:C1inh, and FVIIa:AT. Plasma concentrations of interleukin (IL)-6 and IL-18 were quantified via ELISA. Analyses were performed using Wilcoxon signed-rank test. RESULTS: Levels of FVIIa:AT decreased with a median (IQR) of 707 (549-1028) pg/ml versus 598 (471-996) pg/ml, p = 0.01; and levels of IL-6 increased, 4.0 (1.9-6.8) pg/ml versus 6.9 (3.6-12.2) pg/ml, p = 0.02, after vaccination. No changes were observed in T:AT, PKa:C1Inh, FIXa:AT, FXa:AT, FXIaAT, FXIa:α1AT, FXIa:C1inh, and IL-18. CONCLUSION: ChAdOx1 leads to an inflammatory response with increased levels of IL-6. We did not observe activation of the blood coagulation system 1-2 days following vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL